skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moser, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spatial voting models are widely used in political science to analyze legislators’ preferences and voting behavior. Traditional models assume that legislators’ ideal points are static across different types of votes. This article extends the Bayesian spatial voting model to incorporate hierarchical Bayesian methods, allowing for the identification of covariates that explain differences in legislators’ ideal points across voting domains. We apply this model to procedural and final passage votes in the U.S. House of Representatives from the 93rd through 113th Congresses. Our findings indicate that legislators in the minority party and those representing moderate constituencies are more likely to exhibit different ideal points between procedural and final passage votes. This research advances the methodology of ideal point estimation by simultaneously scaling ideal points and explaining variation in these points, providing a more nuanced understanding of legislative voting behavior. 
    more » « less
    Free, publicly-accessible full text available August 27, 2026
  2. null (Ed.)
    Abstract We extend classical ideal point estimation to allow voters to have different preferences when voting in different domains—for example, when voting on agricultural policy than when voting on defense policy. Our scaling procedure results in estimated ideal points on a common scale. As a result, we are able to directly compare a member’s revealed preferences across different domains of voting (different sets of motions) to assess if, for example, a member votes more conservatively on agriculture motions than on defense. In doing so, we are able to assess the extent to which voting behavior of an individual voter is consistent with a uni-dimensional spatial model—if a member has the same preferences in all domains. The key novelty is to estimate rather than assume the identity of “stayers”—voters whose revealed preference is constant across votes. Our approach offers methodology for investigating the relationship between the basic space and issue space in legislative voting (Poole 2007). There are several methodological advantages to our approach. First, our model allows for testing sharp hypotheses. Second, the methodology developed can be understood as a kind of partial-pooling model for item response theory scaling, resulting in less uncertainty of estimates. Related, our estimation method provides a principled and unified approach to the issue of “granularity” (i.e., the level of aggregation) in the analysis of roll-call data (Crespin and Rohde 2010; Roberts et al. 2016). We illustrate the model by estimating U.S. House of Representatives members’ revealed preferences in different policy domains, and identify several other potential applications of the model including: studying the relationship between committee and floor voting behavior; and investigating constituency influence and representation. 
    more » « less